
1

Create with Code
Unit 1 Lesson Plans

© Unity 2021 Create with Code - Unit 1

2

1.1 Start your 3D Engines

Steps:
Step 1: Make a course folder and new project

Step 2: Import assets and open Prototype 1

Step 3: Add your vehicle to the scene

Step 4: Add an obstacle and reposition it

Step 5: Locate your camera and run the game

Step 6: Move the camera behind the vehicle

Step 7: Customize the interface layout

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson, you will create your very first game project in Unity Hub. You
will choose and position a vehicle for the player to drive and an obstacle for
them to hit or avoid. You will also set up a camera for the player to see
through, giving them a perfect view of the scene. Throughout this process,
you will learn to navigate the Unity Editor and grow comfortable moving
around in 3D Space. Lastly, you will customize your own window layout for
the Unity Editor.

Project
Outcome:

You will have a vehicle and obstacle positioned on the road and the camera
set up perfectly behind the vehicle. You will also have a new custom Unity
layout, perfectly optimized for editing.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create a new project through Unity Hub
- Navigate 3D space and the Unity Editor comfortably
- Add and manipulate objects in the scene to position them where you want
- Position a camera in an ideal spot for your game
- Control the layout of Unity Editor to suit your needs

© Unity 2021 Create with Code - Unit 1

3

Step 1: Make a course folder and new project
The first thing we need to do is create a folder that will hold all of our course projects, then create a new
Unity project inside it for Prototype 1.
1. On your desktop (or somewhere else you will remember),

Right-click > create New Folder, then name it “Create with Code”
2. Open Unity Hub and select the Projects tab from the left

sidebar
3. Select New to create a new project, using one of the supported

versions of Unity (2018.4LTS, 2019.4LTS, or 2020.3LTS)
4. Select the 3D template, name the project “Prototype 1”, and set

the location to the new “Create with Code” folder.
5. Select Create, then wait for Unity to open your new project

- Don’t worry: Unity might
take a while to open, so
just give it some time

© Unity 2021 Create with Code - Unit 1

4

Step 2: Import assets and open Prototype 1
Now that we have an empty project open, we need to import the assets for Prototype 1 and open the
scene
1. Click to download the Prototype 1 Starter Files, then
extract the compressed folder.
Windows: Right-click on the file > Extract All
Mac: Double-click on the file

2. From the top menu in Unity, select Assets > Import
Package > Custom Package, then navigate to the folder
you extracted and select the
Prototype-1_Starter-Files.unitypackage file.

3. In the Import Unity Package window that pops up, select
Import and wait for the assets to import.

4. In the Project window, in Assets > Scenes > double-click on
the Prototype 1 scene to open it

5. Delete the Sample Scene without saving
6. Right-click + drag to look around at the start of the road

- Warning: You’re free to look
around, but don’t try moving
yet

- Warning: Be careful playing
with this interface, don’t click
on anything else yet

- New Concept: Project Window

© Unity 2021 Create with Code - Unit 1

https://connect-prd-cdn.unity.com/20210507/6c595e73-affa-42f7-ae53-9d7e33e7247a/Prototype%201%20-%20Starter%20Files.zip?_ga=2.24002682.1186801097.1620052249-59568313.1601905412

5

Step 3: Add your vehicle to the scene
Since we’re making a driving simulator, we need to add our own vehicle to the scene.

1. In the Project Window, open Assets > Course Library >
Vehicles, then drag a vehicle into the Hierarchy

2. Hold right-click + WASD to fly to the vehicle, then try to
rotate around it

3. With the vehicle selected and your mouse in the Scene
view, Press F to focus on it

4. then use the scroll wheel to zoom in and out and hold the
scroll wheel to pan

5. Hold alt+left-click to rotate around the focal point or hold
alt+right-click to zoom in and out

6. If anything goes wrong, press Ctrl/Cmd+Z to Undo until it’s
fixed

- New: Hierarchy
- New: Undo (Cmd/Ctrl + Z) and

Redo (Cmd+Shift+Z / Ctrl+Y)
- Warning: Mouse needs to be in

scene view for F/focus to work
- New Technique: Scroll Wheel

for Zoom and Pan

© Unity 2021 Create with Code - Unit 1

6

Step 4: Add an obstacle and reposition it
The next thing our game needs is an obstacle! We need to choose one and position it in front of
the vehicle.

1. Go to Course Library > Obstacles and drag an obstacle
directly into the Scene view

2. In the Inspector for your obstacle, in the top-right of the
Transform component, click the more options button >
Reset Position
Note: The more options button may appear as three
vertical dots or a gear icon, depending on your version of
Unity

3. In the Inspector, change the XYZ Location to x=0, y=0,
z=25

4. In the Hierarchy, Right-click > Rename your two objects as
“Vehicle” and “Obstacle”

- New Concept: XYZ location,
rotation and scale

- New Concept: Inspector

© Unity 2021 Create with Code - Unit 1

7

Step 5: Locate your camera and run the game
Now that we’ve set up our vehicle and obstacle, let’s try running the game and looking through
the camera.

1. Select the Camera in the hierarchy, then press F to focus
on it

2. Press the Play button to run your Game, then press Play
again to stop it

- New Concept: Game View vs
Scene View

- New Technique: Stop/Play
(Cmd/Ctrl + P)

Step 6: Move the camera behind the vehicle
In order for the player to properly view our game, we should position and angle the camera in a
good spot behind the vehicle

1. Use the Move and Rotate tools to move the camera behind the
vehicle looking down on it

2. Hold Ctrl/Cmd to move the camera by whole units

- New Technique:
Snapping (Cmd/Ctrl +
Drag)

- New Concept: Rotation
on the XYZ Axes

© Unity 2021 Create with Code - Unit 1

8

Step 7: Customize the interface layout
Last but not least, we need to customize the Unity Editor layout so that it’s perfect for editing
our project.

1. In the top-right corner, change the layout from “Default” to “Tall”,
2. Move Game view beneath Scene view
3. In the Project window, click on the little drop-down menu in the

top-right and choose “One-column layout”
4. In the layout Dropdown, save a new Layout and call it “My

Layout”

- New Concept: Layouts

Lesson Recap
New
Functionality

● Project set up with assets imported
● Vehicle positioned at the start of the road
● Obstacle positioned in front of the vehicle
● Camera positioned behind vehicle

New Concepts
and Skills

● Create a new project
● Import assets
● Add objects to the scene
● Game vs Scene view
● Project, Hierarchy, Inspector windows
● Navigate 3D space
● Move and Rotate tools
● Customize the layout

Next Lesson ● We’ll really make this interactive by writing our first line of code in C# to
make the vehicle move and have it collide with other objects in the scene

© Unity 2021 Create with Code - Unit 1

9

1.2 Pedal to the Metal

Steps:
Step 1: Create and apply your first script

Step 2: Add a comment in the Update() method

Step 3: Give the vehicle a forward motion

Step 4: Use a Vector3 to move forward

Step 5: Customize the vehicle’s speed

Step 6: Add RigidBody components to objects

Step 7: Duplicate and position the obstacles

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson you will make your driving simulator come alive. First you will
write your very first lines of code in C#, changing the vehicle’s position and
allowing it to move forward. Next you will add physics components to your
objects, allowing them to collide with one another. Lastly, you will learn how
to duplicate objects in the hierarchy and position them along the road.

Project
Outcome:

You will have a moving vehicle with its own C# script and a road full of
objects, all of which may collide with each other using physics components.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create C# scripts and apply them to objects
- Use Visual Studio and a few of its basic features
- Write comments to make your code more readable
- Utilize fundamental C# methods and classes like transform.Translate and

Vector3
- Add Rigidbody and Collider components to allow objects to collide

realistically
- Duplicate objects in the hierarchy to populate your scene

© Unity 2021 Create with Code - Unit 1

10

Step 1: Create and apply your first script
We will start this lesson by creating our very first C# script that will control the vehicle’s
movement.
1. In the Project window, Right-click > Create > Folder

named “Scripts”
2. In the “Scripts” folder, Right-click > Create > C#

Script named “PlayerController”
3. Drag the new script onto the Vehicle object
4. Click on the Vehicle object to make sure it was

added as a Component in the Inspector

- New Concept: C# Scripts
- Warning: Type the script name as

soon as the script is created, since it
adds that name to the code. If you
want to edit the name, just delete it
and make a new script

- New Concept: Components

Step 2: Add a comment in the Update() method
In order to make the vehicle move forward, we have to first open our new script and get familiar
with the development environment.

1. Double-click on the script to open it in Visual
Studio

2. In the Update() method, add a comment that you
will: // Move the vehicle forward

- New: Start vs Update functions
- New: Comments

void Update()
{

// Move the vehicle forward
}

© Unity 2021 Create with Code - Unit 1

11

Step 3: Give the vehicle a forward motion
Now that we have the comment saying what we WILL program - we have to write a line of code
that will actually move the vehicle forward.

1. Under your new comment, type transform.tr, then
select Translate from the autocomplete menu

2. Type (, add 0, 0, 1 between the parentheses, and
complete the line with a semicolon (;)

3. Press Ctrl/Cmd + S to save your script, then run
your game to test it

- New Function: transform.Translate
- New Concept: Parameters
- Warning: Don’t use decimals yet. Only

whole numbers!

void Update()
{

// Move the vehicle forward
transform.Translate(0, 0, 1);

}

Step 4: Use a Vector3 to move forward
We’ve programmed the vehicle to move along the Z axis, but there’s actually a cleaner way to
code this.

1. Delete the 0, 0, 1 you typed and use auto-complete
to replace it with Vector3.forward

- New Concept: Documentation
- New Concept: Vector3
- Warning: Make sure to save time and

use Autocomplete! Start typing and VS
Code will display a popup menu with
recommended code.

void Update()
{

// Move the vehicle forward
transform.Translate(0, 0, 1 Vector3.forward);

}

© Unity 2021 Create with Code - Unit 1

12

Step 5: Customize the vehicle’s speed
Right now, the speed of the vehicle is out of control! We need to change the code in order to
adjust this.

1. Add * Time.deltaTime and run your game
2. Add * 20 and run your game

- New Concept: Math symbols in C#
- New Function: Time.deltaTime

void Update()
{

// Move the vehicle forward
transform.Translate(Vector3.forward * Time.deltaTime * 20);

}

Step 6: Add RigidBody components to objects
Right now, the vehicle goes right through the box! If we want it to be more realistic, we need to
add physics.

1. Select the Vehicle, then in the hierarchy click Add
Component and select RigidBody

2. Select the Obstacle, then in the hierarchy click Add
Component and select RigidBody

3. In the RigidBody component properties, increase
the mass of vehicle and obstacle to be about what
they would be in kilograms and test again

- New Concept: Rigidbody Component
- New Concept: Collider Component
- Tip: Adjust the mass of the vehicle and

the obstacle, and test the collision
results

© Unity 2021 Create with Code - Unit 1

13

Step 7: Duplicate and position the obstacles
Last but not least, we should duplicate the obstacle and make the road more treacherous for
the vehicle.

1. Click and drag your obstacle to the bottom of the
list in the hierarchy

2. Press Ctrl/Cmd+D to duplicate the obstacle and
move it down the Z axis

3. Repeat this a few more times to create more
obstacles

4. After making a few duplicates, select one in the
hierarchy and hold ctrl + click to select multiple
obstacles, then duplicate those

- New Technique: Duplicate
(Ctrl/Cmd+D)

- Tip: Try using top-down view to make
this easier

- Tip: Try using the inspector to space
your obstacles exactly 25 apart

Lesson Recap
New
Functionality

● Vehicle moves down the road at a constant speed
● When the vehicle collides with obstacles, they fly into the air

New Concepts
and Skills

● C# Scripts
● Start vs Update
● Comments
● Methods
● Pass parameters
● Time.deltaTime
● Multiply (*) operator
● Components
● Collider and RigidBody

Next Lesson ● We’ll add some code to our camera, so that it follows the player as they
drive along the road.

© Unity 2021 Create with Code - Unit 1

14

1.3 High Speed Chase

Steps:
Step 1: Add a speed variable for your vehicle

Step 2: Create a new script for the camera

Step 3: Add an offset to the camera position

Step 4: Make the offset into a Vector3 variable

Step 5: Smooth the Camera with LateUpdate

Step 6: Edit the playmode tint color

Example of project by end of lesson

Length: 50 minutes

Overview: Keep your eyes on the road! In this lesson you will code a new C# script for
your camera, which will allow it to follow the vehicle down the road and give
the player a proper view of the scene. In order to do this, you’ll have to use a
very important concept in programming: variables.

Project
Outcome:

The camera will follow the vehicle down the road through the scene, allowing
the player to see where it’s going.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Declare variables properly and understand that variables can be different

data types (float, Vector3, GameObject)
- Initialize/assign variables through code or through the inspector to set

them with appropriate values
- Use appropriate access modifiers (public/private) for your variables in

order to make them easier to change in the inspector
- Use the Update and LateUpdate appropriately in order to call one action

after another has already happened

© Unity 2021 Create with Code - Unit 1

15

Step 1: Add a speed variable for your vehicle
We need an easier way to change the vehicle’s speed and allow it to be accessed from the
inspector. In order to do so what we need is something called a variable.
1. In PlayerController.cs, add public float speed =

5.0f; at the top of the class
2. Replace the speed value in the Translate method

with the speed variable, then test
3. Save the script, then edit the speed value in the

inspector to get the speed you want

- New Concept: Floats and Integers
- New Concept: Assigning Variables
- New Concept: Access Modifiers

public float speed = 20;

void Update()
{

transform.Translate(Vector3.forward * Time.deltaTime * 20 speed);
}

Step 2: Create a new script for the camera
The camera is currently stuck in one position. If we want it to follow the player, we have to make
a new script for the camera.
1. Create a new C# script called FollowPlayer and

attach it to the camera
2. Add public GameObject player; to the top of the

script
3. Select the Main Camera, then, drag the player

object onto the empty player variable in the
Inspector

4. In Update(), assign the camera’s position to the
player’s position, then test

- Warning: Remember to capitalize your
script name correctly and rename it as
soon as the script is created!

- Warning: It’s really easy to forget to
assign the player variable in the
inspector

- Don’t worry: The camera will be under
the car... weird! We will fix that soon

public GameObject player;

void Update()
{

transform.position = player.transform.position;
}

© Unity 2021 Create with Code - Unit 1

16

Step 3: Add an offset to the camera position
We need to move the camera’s position above the vehicle so that the player can have a decent
view of the game.
1. In the line in the Update method add + new

Vector3(0, 5, -7), then test
- New Concept: Vector3 in place of

coordinates
- Tip: You need “new Vector3()” because

3 numbers in a row could mean
anything

- New Concept: FixedUpdate
- Warning: Remember to update your

comments and maintain their
accuracy!

public GameObject player;

void Update()
{

transform.position = player.transform.position + new Vector3(0, 5, -7);
}

Step 4: Make the offset into a Vector3 variable
We’ve fixed the camera’s position, but we may want to change it later! We need an easier way to
access the offset.

1. At the top of FollowPlayer.cs, declare private
Vector3 offset;

2. Copy the new Vector3() code and assign it to that
variable

3. Replace the original code with the offset variable
4. Test and save

- Don’t worry: Pay no mind to the read
only warning

- Tip: Whenever possible, make variables!
You never want hard values in the
middle of your code

public GameObject player;
private Vector3 offset = new Vector3(0, 5, -7);

void Update()
{
transform.position = player.transform.position + new Vector3(0, 5, -7) offset;

}

© Unity 2021 Create with Code - Unit 1

17

Step 5: Smooth the Camera with LateUpdate
You may have noticed that the camera is kind of jittery as the car drives down the road - let’s fix
that.

1. Test your prototype to notice the jittering camera
as the vehicle drives.

2. In FollowPlayer.cs, replace Update() with
LateUpdate().

3. Save and test to see if the camera is less jittery.

- New Concept: LateUpdate is called
after the Update method, which allows
to more smoothly follow the player.

void LateUpdate()
{
transform.position = player.transform.position + offset;

}

Step 6: Edit the playmode tint color
If we’re going to be creating and editing variables, we need to make sure we don’t accidentally
try to make changes when in “Play mode”

1. From the top menu, go to Edit > Preferences
(Windows) or Unity > Preferences (Mac)

2. In the left menu, choose Colors, then edit the
“Playmode tint” color to have a slight color

3. Play your project to test it, then close your
preferences

- Tip: Try editing a variable in play mode,
then stopping - it will revert

- Warning: Don’t go crazy with the colors
or it will be distracting

© Unity 2021 Create with Code - Unit 1

18

Lesson Recap
New
Functionality

● Camera follows the vehicle down the road at a set offset distance

New Concepts
and Skills

● Variables
● Data types
● Access Modifiers
● Declare and initialize variables
● LateUpdate

Next Lesson ● In the next lesson, we’ll add our last lines of code to take control of our car
and be able to drive it around the scene.

© Unity 2021 Create with Code - Unit 1

19

1.4 Step into the Driver’s Seat

Steps:
Step 1: Allow the vehicle to move left/right

Step 2: Base left/right movement on input

Step 3: Take control of the vehicle speed

Step 4: Make vehicle rotate instead of slide

Step 5: Clean your code and hierarchy

Example of project by end of lesson

Length: 50 minutes

Overview: In this lesson, we need to hit the road and gain control of the vehicle. In order
to do so, we need to detect when the player is pressing the arrow keys, then
accelerate and turn the vehicle based on that input. Using new methods,
Vectors, and variables, you will allow the vehicle to move forwards or
backwards and turn left to right.

Project
Outcome:

When the player presses the up/down arrows, the vehicle will move forward
and backward. When the player presses the left/right arrows, the vehicle will
turn.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Gain user input with Input.GetAxis, allowing the player to move in different

ways
- Use the Rotate function to rotate an object around an axis
- Clean and organize your hierarchy with Empty objects

© Unity 2021 Create with Code - Unit 1

20

Step 1: Allow the vehicle to move left/right
Until now, the vehicle has only been able to move straight forward along the road. We need it to
be able to move left and right to avoid the obstacles.
1. At the top of PlayerController.cs, add a public float

turnSpeed; variable
2. In Update(), add

transform.Translate(Vector3.right *
Time.deltaTime * turnSpeed);

3. Run your game and use the turnSpeed variable
slider to move the vehicle left and right

- New Function: Vector3.right

public float turnSpeed;

void Update()
{

transform.Translate(Vector3.forward * Time.deltaTime * speed);
transform.Translate(Vector3.right * Time.deltaTime * turnSpeed);

}

© Unity 2021 Create with Code - Unit 1

21

Step 2: Base left/right movement on input
Currently, we can only control the vehicle’s left and right movement in the inspector. We need to
grant some power to the player and allow them to control that movement for themselves.
1. From the top menu, click Edit > Project Settings, select Input

Manager in the left sidebar, then expand the Axes fold-out to
explore the inputs.

2. In PlayerController.cs, add a new public float horizontalInput
variable

3. In Update, assign horizontalInput = Input.GetAxis("Horizontal");,
then test to see it in inspector

4. Add the horizontalInput variable to your left/right Translate
method to gain control of the vehicle

5. In the Inspector, edit the turnSpeed and speed variables to tweak
the feel

- New: Input.GetAxis
- Tip: Edit > Project

Settings > Input and
expand the Horizontal
Axis to show
everything about it

- Warning: Spelling is
important in string
parameters. Make sure
you spell and
capitalize “Horizontal”
correctly!

public float horizontalInput;

void Update()
{

horizontalInput = Input.GetAxis("Horizontal");

transform.Translate(Vector3.forward * Time.deltaTime * speed);
transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);

}

© Unity 2021 Create with Code - Unit 1

22

Step 3: Take control of the vehicle speed
We’ve allowed the player to control the steering wheel, but we also want them to control the gas
pedal and brake.
1. Declare a new public forwardInput variable
2. In Update, assign forwardInput =

Input.GetAxis("Vertical");
3. Add the forwardInput variable to the forward

Translate method, then test

- Tip: It can go backwards, too!
- Warning: This is slightly confusing with

forwardInput and vertical axis

public float horizontalInput;
public float forwardInput;

void Update()
{

horizontalInput = Input.GetAxis("Horizontal");
forwardInput = Input.GetAxis("Vertical");

transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);
transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);

}

Step 4: Make vehicle rotate instead of slide
There’s something weird about the vehicle’s movement… it’s slides left to right instead of
turning. Let’s allow the vehicle to turn like a real car!

1. In Update, call transform.Rotate(Vector3.up,
horizontalInput), then test

2. Delete the line of code that translates Right, then
test

3. Add * turnSpeed * Time.deltaTime, then test

- New: transform.Rotate
- Tip: You can always trust the official

Unity scripting API documentation

void Update()
{

horizontalInput = Input.GetAxis("Horizontal");
forwardInput = Input.GetAxis("Vertical");

transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);
transform.Rotate(Vector3.up, turnSpeed * horizontalInput * Time.deltaTime);
transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);

}

© Unity 2021 Create with Code - Unit 1

23

Step 5: Clean your code and hierarchy
We added lots of new stuff in this lesson. Before moving on and to be more professional, we
need to clean our scripts and hierarchy to make them more organized.

1. In the hierarchy, Right-click > Create Empty and
rename it “Obstacles”, then drag all the obstacles
into it

2. Initialize variables with values in PlayerController,
then make all variables private (except for the
player variables)

3. Use // to add comments to each section of code

- New: Empty Object
- Tip: You don’t actually need to type

“private”, it defaults to that
- Tip: Comments are important,

especially for your future self

public private float speed = 20.0f;
public private float turnSpeed = 45.0f;
public private float horizontalInput;
public private float forwardInput;

void Update() {
horizontalInput = Input.GetAxis("Horizontal");
forwardInput = Input.GetAxis("Vertical");
// Moves the car forward based on vertical input
transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);
// Rotates the car based on horizontal input
transform.Rotate(Vector3.up, turnSpeed * horizontalInput * Time.deltaTime);

}

Lesson Recap
New
Functionality

● When the player presses the up/down arrows, the vehicle will move forward
and backward

● When the player presses the left/right arrows, the vehicle turns

New Concepts
and Skills

● Empty objects
● Get user input
● Translate vs Rotate

© Unity 2021 Create with Code - Unit 1

24

Challenge 1
Plane Programming

Challenge
Overview:

Use the skills you learned in the driving simulation to fly a plane around
obstacles in the sky. You will have to get the user’s input from the up and down
arrows in order to control the plane’s pitch up and down. You will also have to
make the camera follow alongside the plane so you can keep it in view.

Challenge
Outcome:

- The plane moves forward at a constant rate
- The up/down arrows tilt the nose of the plane up and down
- The camera follows along beside the plane as it flies

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Using the Vector3 class to move and rotate objects along/around an axis
- Using Time.deltaTime in the Update() method to move objects properly
- Moving and rotating objects in scene view to position them the way you want
- Assigning variables in the inspector and initializing them in code
- Implementing Input variables to control the movement/rotation of objects

based on User input

Challenge
Instructions:

- Open your Prototype 1 project
- Download the "Challenge 1 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 1 > Instructions folder, use the

Outcome video as a guide to complete the challenge

© Unity 2021 Create with Code - Unit 1

25

Challenge Task Hint

1 The plane is going
backwards

Make the plane go forward Vector3.back makes an object
move backwards, Vector3.forward
makes it go forwards

2 The plane is going too
fast

Slow the plane down to a
manageable speed

If you multiply a value by
Time.deltaTime, it will change it
from 1x/frame to 1x/second

3 The plane is tilting
automatically

Make the plane tilt only if the
user presses the up/down
arrows

In PlayerControllerX.cs, in Update(),
the verticalInput value is
assigned, but it’s never actually used
in the Rotate() call

4 The camera is in front
of the plane

Reposition it so it’s beside
the plane

For the camera’s position, try X=30,
Y=0, Z=10 and for the camera’s
rotation, try X=0, Y=-90, Z=0

5 The camera is not
following the plane

Make the camera follow the
plane

In FollowPlayerX.cs, neither the plane
nor offset variables are assigned a
value - assign the plane variable in
the camera’s inspector and assign
the offset = new Vector3(30,
0, 10) in the code

Bonus Challenge Task Hint

X The plane’s propeller
does not spin

Create a script that spins the
plane’s propeller

There is a “Propeller” child object of
the plane - you should create a new
“SpinPropellerX.cs” script and make it
rotate every frame around the Z axis.

© Unity 2021 Create with Code - Unit 1

26

Challenge Solution

1 In PlayerControllerX.cs, in Update, change Vector3.back to Vector3.forward

// move the plane forward at a constant rate

transform.Translate(Vector3.back.forward * speed);

2 In PlayerControllerX.cs, in Update, add * Time.deltaTime to the Translate call

// move the plane forward at a constant rate
transform.Translate(Vector3.forward * speed * Time.deltaTime);

3 In PlayerControllerX.cs, include the verticalInput variable to the Rotate method:

// tilt the plane up/down based on up/down arrow keys
transform.Rotate(Vector3.right * rotationSpeed * verticalInput * Time.deltaTime);

4 Change the camera’s position to (30, 0, 10) and its rotation, to (0, -90, 0)

5 To assign the plane variable, select Main Camera
in the hierarchy, then drag the Plane object onto
the “Plane” variable in the inspector

To assign the offset variable, add the value
as a new Vector3 at the top of
FollowPlane.cs:

private Vector3 offset = new Vector3(30,

0, 10);

© Unity 2021 Create with Code - Unit 1

27

Bonus Challenge Solution

X1 Create a new Script called “SpinPropellerX.cs” and attach it to the “Propellor” object (which is
a child object of the Plane):

X2 In RotatePropellerX.cs, add a new propellorSpeed variable and Rotate the propeller on the Z
axis

private float propellorSpeed = 1000;

void Update() {

transform.Rotate(Vector3.forward, propellorSpeed * Time.deltaTime);

}

© Unity 2021 Create with Code - Unit 1

28

Unit 1 Lab
Project Design Document
Steps:
Step 1: Understand what a Personal Project is

Step 2: Review Design Doc examples

Step 3: Complete your Project Concept V1

Step 4: Complete your Project Timeline

Step 5: Complete your MVP sketch

Example of progress by end of lab

Length: 60 minutes

Overview: In this first ever Lab session, you will begin the preliminary work required to
successfully create a personal project in this course. First, you’ll learn what a
personal project is, what the goals for it are, and what the potential
limitations are. Then you will take the time to come up with an idea and
outline it in detail in your Design Document, including a timeline for when you
hope to complete certain features. Finally, you will take some time to draw a
sketch of your project to help you visualize it and share your idea with others.

Project
Outcome:

The Design Document will be filled out, including the concept, the timeline,
and a preliminary sketch of the minimum viable product.

Learning
Objectives:

By the end of this lab, you will be able to:
- Come up with an idea for a project with a scope appropriate to your time

and available resources
- Think through a project’s concept in order to better understand its

requirements
- Plan out a project’s milestones with due dates to better understand the

production cycle and to hold yourself more accountable
- Create a simple sketch / storyboard in order to better communicate your

ideas

© Unity 2021 Create with Code - Unit 1

29

Step 1: Understand what a Personal Project is
Before we get started on our personal projects, we should make sure we understand our
primary goals.

Explain What Personal Projects (PP’s) are:
● Projects they will be working on on their own with less direct instruction
● A chance to create a project they really care about with their own creative choices
● An opportunity to apply and solidify skills they learned in lessons and challenges

Demo The Core Functionality and skills they will learn from each of the 5 Units by showcasing
completed versions of each Prototype:

1. Driving Simulation: player control through user input
2. Feed the Animals: basic gameplay by spawning random objects on an interval

and trying to collect them, avoid them, or fire projectiles at them
3. Run and Jump: sound and effects, and animation (of background or player)
4. Sumo Battle: gameplay mechanics, powerups and/or increasing difficulty
5. Quick Click: user interface with title screen, game over screen, and score display

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

Explain Goal / Evaluation of the PP’s are based on:
● Completeness - how much of what you set out to complete did you actually finish
● Uniqueness / Application - how much did you add new design and dev features,

extending and applying your skills in novel and creative ways
NOTE - These two priorities are at odds and it’s up to you to find the balance

Explain You just need a Minimum Viable Product (an MVP) - doesn’t have to be polished
● Definition: a product with just enough features to satisfy early customers, and to

provide feedback for future product development
● This will allow them to focus on the core of the project and not get distracted by

flashy features and graphics that don’t matter as much

Warning There will be a temptation to try and do too much that is completely different from what
anything in the course (e.g. “I want to make “Madden + Facebook + Google!”)

● There’s lots of time to try and do really ambitious crazy projects in the future, but
for now on this first project, try to stick closely to the core functionality you’re
learning

● The only limitation is time - with enough time, they could make anything!

Discuss Make sure students understand what the Personal Project is, allowing them to ask
questions

© Unity 2021 Create with Code - Unit 1

30

Step 2: Review Design Doc examples
Now that we have some idea of what a Personal Project is, let’s look a couple examples
1. Click on the link to open a new Project Design Doc

as either a Google Doc Copy, a Word Document or
PDF

2. Think through how you would fill out a design doc
for other games

- Warning: you will need to be signed
into a Google account to be able to
make a copy of the Google Doc version

- Tip: Search YouTube for “gameplay” of
the classic game you want

- Explanation: Notice that sections
correspond to what you’ll be learning
with each unit/prototype

Step 3: Complete your Project Concept V1
Now that we’ve seen some examples, let’s try to come up with our own project concept.

1. Add your name and date in
the top-right corner

2. Fill in the blanks for your
project concept

3. Share your project concept
with someone else to make
sure it makes sense to them

- Explanation: In the Course Library, you’ve got human
characters, animals, vehicles, foods, sports balls, other
random things, but you can always use “primitives” as
placeholders in a MVP, then go to the Unity Asset store to
get real graphics

- Tip: This is good opportunity to catch yourself if you’re
being too ambitious

- Don’t worry: This is just a best guess right now, if you want
to change your project completely next lab, you could

© Unity 2021 Create with Code - Unit 1

https://docs.google.com/document/d/1FR-GYr2hL67d6MleWTTP-mXfCHVZTM1Mko77MFodxFg/copy
https://connect-prd-cdn.unity.com/20200401/a0ca9f73-ec70-4024-bc42-256d14ada1ce/Project%20Design%20Doc%20[WORD].docx?_ga=2.251071302.1186801097.1620052249-59568313.1601905412
https://connect-prd-cdn.unity.com/20190524/19ad3c2b-506e-46c9-9700-07180536a9d2_Project_Design_Doc__PDF_.pdf?_ga=2.251071302.1186801097.1620052249-59568313.1601905412

31

Step 4: Complete your Project Timeline
Now that we know the basic concept of our project, let’s figure out how we’re going to get it
done.

1. Fill in milestone
descriptions based
on your schedule for
the course, including
self-imposed due
dates

2. Add features that
will not be included
in your MVP to the
“Backlog”

- Warning: This is a MVP, so don’t be afraid to put objects on backlog
that you’ll get to in version 2

- Explanation: In Lab 2 you will be setting up your project, in Lab 3 you
will do basic player movement, in Lab 4 you will add basic gameplay,
and Lab 5 you will add graphics - that would be a good start in filling
this out

- Tip: This will depend heavily on the schedule you’re following for this
course - you should leave a significant amount of time to work on it
at the end when you’ve completed all 5 units

- Don’t worry: It will be hard to do this accurately, since you don’t know
how long things take - this can change

- Don’t worry: You don’t need to use all milestones - can add more or
leave blank rows you are not using

- Tip: These should be worded as “Completed functionality” - as in:
“Frog can move side-to-side based on left/right arrow keys”

© Unity 2021 Create with Code - Unit 1

32

Step 5: Complete your MVP sketch
To help visualize our minimum viable product, it’s always helpful to have a sketch.

1. Look at sketch in the example
2. Using Google Docs, some other online

simple drawing program, or pencil and
paper, draw a sketch of your MVP and
add it to your doc

- Warning: Do not spend forever on this - it’s just a
sketch - use circles, squares, and arrows

- Explanation: This should just be a sketch of your
MVP - what you hope to accomplish by the end
of the course - not the fully fledged product

Lesson Recap
New Progress ● Completed your project concept and production timeline

New Concepts
and Skills

● Personal Projects
● Design Documents
● Project Timelines
● Project Milestones and Backlogs
● Minimum Viable Products

© Unity 2021 Create with Code - Unit 1

33

Quiz Unit 1
QUESTION CHOICES

1 Which Unity window contains a list of all the game
objects currently in your scene?

a. Scene view
b. Project window
c. Hierarchy
d. Inspector

2 True or False:
Visual Studio is not a part of Unity. You could use a
different code editor to edit your C# scripts if you
wanted to.

a. True
b. False

3 What best describes the difference between the below
images, where the car is in the second image is further
along the road?

a. The second car’s X location
value is higher than the first
car’s

b. The second car’s Y location
value is higher than the first
car’s

c. The second car’s Z location
value is higher than the first
car’s

d. The second car’s Transform
value is higher than the first
car’s.

4 In what order do you put the words when you are
declaring a new variable?

a. [data type] [access modifier]
[variable value] [variable name]

b. [access modifier] [data type]
[variable name] [variable value]

c. [data type] [access modifier]
[variable name] [variable value]

d. [variable name] [data type]

public float speed = 20.0f;

© Unity 2021 Create with Code - Unit 1

34
[access modifier] [variable
value]

5 Which of the following variables would be visible in the
Inspector?

a. speed
b. turnSpeed
c. speed & turnSpeed
d. horizontalInput & forwardInputpublic float speed;

float turnSpeed = 45.0f;

private float horizontalInput;

private float forwardInput;

6 What is a possible value for the horizontalInput variable? a. -10
b. 0.52
c. “Right”
d. Vector3.Up

horizontalInput = Input.GetAxis("Horizontal");

7 What is true about the following two lines of code? a. They will both move an object
the same distance

b. They will both move an object
in the same direction

c. They will both move an object
along the same axis

d. They will both rotate an object,
but along different axes

transform.Translate(Vector3.forward);

transform.Translate(1, 0, 0);

8 Which of the following lines of code is using standard
Unity naming conventions?

a. Line A
b. Line B
c. Line C
d. Line D/* a */ Public Float Speed = 40.0f;

/* b */ public float Speed = 40.0f;

/* c */ public float Speed = 40.0f;

/* d */ public float speed = 40.0f;

9 Which comment would best describe the code below? a. // Rotates around the Y axis
based on left/right arrow keys

b. // Rotates around the Z axis
based on up/down arrow keys

c. // Rotates in an upward
direction based on left/right

horizontalInput = Input.GetAxis("Horizontal");

transform.Rotate(Vector3.up, horizontalInput);

© Unity 2021 Create with Code - Unit 1

35
arrow keys

d. // Moves object up/down
based on the the left/right
arrow keys

10 The image below shows the preferences window that
allows you to change which script editing tool (or IDE)
you want to use. Where would you click to choose an
alternative code editing tool?

a. The red box (External Script
Editor)

b. The blue box (Image
application)

c. The green box (Revision
control Diff/Merge)

© Unity 2021 Create with Code - Unit 1

36

Quiz Answer Key
ANSWER EXPLANATION

1 C The Hierarchy window contains a list of every GameObject in the current
Scene. As objects are added and removed in the Scene, they will appear and
disappear from the Hierarchy as well.

2 B True. Visual Studio is just one of many editors you could use to edit your
code, including editors like Atom, Sublime, or even a basic Text Editor.

3 C You can tell which axis the car has moved along using the XYZ directional
gizmo in the top-right, which shows the blue axis pointing forwards down the
road.

4 B Variables are always declared in the order:
[access modifier] - public, private, etc
[data type] - float, int, GameObject, etc
[variable name] - speed, turnSpeed, player, offset, etc
[variable value] - 1.0f, 2, new Vector3(0, 1, 0), etc

5 A “public float speed” would be visible because it has the “public” modifier
applied to it

6 B Input.GetAxis returns a float value between -1 and 1, which means 0.52 is a
possible value

7 A Vector3.forward is the equivalent of (0, 0, 1), which has the same magnitude
as (1, 0, 0), even though they’re in different directions, so they would both
move an object the same distance, but along different axes

8 D “public float speed = 40.0f;” uses the correct naming conventions because all
three of these terms should start with lowercase letters

9 A Vector3.up is the Y axis and it’s using the Horizontal input value, so it would
rotate around the Y axis when the user presses the left/right arrows

10 A You would click on the Red box to change the “External Script Editor” from
Visual Studio to another tool.

© Unity 2021 Create with Code - Unit 1

37

Bonus Features 1 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 1

38

Step 1: Overview
This tutorial outlines four potential bonus features for the Driving Simulation Prototype at varying
levels of difficulty:

● Easy: Obstacle Pyramids
● Medium: Oncoming vehicles
● Hard: Camera switcher
● Expert: Local multiplayer

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 1

39

Step 2: Easy: Obstacle pyramids
Create stacks, piles, or pyramids of obstacles for the vehicle to drive through.
These will be more satisfying for the player to crash into compared with single objects.

Step 3: Medium: Oncoming vehicles
Add a couple of other cars that are automatically driving down the road in the opposite direction,
which the player also has to avoid.
This will make the experience much more challenging, since the player will now be forced to think
quickly, rather than taking as much time as they need.

© Unity 2021 Create with Code - Unit 1

40

Step 5: Hard: Camera switcher
Allow the player to press a key on the keyboard to switch camera views.
Ideally, the same key would toggle between two views, one above and behind the vehicle, and the
other from the perspective of the driver’s seat.

Step 6: Expert: Local multiplayer
Transform this into a “local multiplayer” split-screen game with two cars, where one player’s car is
controlled by WASD and the other is controlled by the arrow keys.
This would add a completely new competitive dimension to the prototype.

© Unity 2021 Create with Code - Unit 1

41

Step 7: Hints and solution walkthrough
Hints:

● Easy: Obstacle pyramids
○ Remember to use a Rigidbody!

● Medium: Oncoming vehicles
○ Try using transform.Translate to move the other vehicles.

● Hard: Camera switcher
○ Add a second camera and then use a key press to enable and disable it.

● Expert: Local multiplayer
○ You will need to edit the Input Manager and the Camera’s Viewport Rect Width

property.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 1

https://connect-prd-cdn.unity.com/20210504/93a938b7-ee56-488f-b0b3-8b956c0a31fd/Unit%201%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.197142511.1186801097.1620052249-59568313.1601905412

42

© Unity 2021 Create with Code - Unit 1

